We are given the equation:
$a + b = 1$
We need to find the value of:
$a^3 + b^3 + 3ab$
### Step 1: Use the identity for sum of cubes
We know the identity:
$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$
Using the square identity:
$a^2 + b^2 = (a + b)^2 - 2ab$
Substituting $a + b = 1$:
$a^2 + b^2 = 1^2 - 2ab = 1 - 2ab$
Now, substituting in the sum of cubes identity:
$a^3 + b^3 = (1)(1 - 3ab) = 1 - 3ab$
Thus,
$a^3 + b^3 + 3ab = (1 - 3ab) + 3ab = 1$
So, the correct answer is **2) 1**.