Let the principal be **P** and the rate of interest per annum be **R%**.
### Step 1: Using Simple Interest Formula
Simple Interest (SI) is given by:
$ SI = \frac{P \times R \times T}{100} $
Given that **SI for 2 years** is Rs. 20:
$ \frac{P \times R \times 2}{100} = 20 $
$ P \times R = 1000 $ ----(Equation 1)
### Step 2: Using Compound Interest Formula
Compound Interest (CI) for 2 years is given by:
$ CI = P \left(1 + \frac{R}{100} \right)^2 - P $
Given that **CI for 2 years** is Rs. 21:
$ P \left(1 + \frac{R}{100} \right)^2 - P = 21 $
Expanding using the binomial approximation:
$ P \left( 1 + \frac{2R}{100} + \frac{R^2}{10000} \right) - P = 21 $
$ P \times \left( \frac{2R}{100} + \frac{R^2}{10000} \right) = 21 $
$ P \times \frac{2R}{100} + P \times \frac{R^2}{10000} = 21 $
Using Equation 1:
$ \frac{1000 \times 2}{100} + P \times \frac{R^2}{10000} = 21 $
$ 20 + P \times \frac{R^2}{10000} = 21 $
$ P \times \frac{R^2}{10000} = 1 $
$ P \times \frac{(1000/P)^2}{10000} = 1 $
$ \frac{1000000}{10000P} = 1 $
$ \frac{100}{P} = 1 $
$ P = 200 $
Thus, the correct answer is:
$\boxed{200}$ **Rs.**