The general form of a quadratic polynomial when the sum and product of its zeroes are given is:
$x^2 - (\text{sum of zeroes})x + (\text{product of zeroes})$
Now, applying this formula for each given pair:
1) Sum = $\frac{1}{4}$, Product = $-1$
$x^2 - \frac{1}{4}x - 1$
2) Sum = $\sqrt{2}$, Product = $\frac{1}{3}$
$x^2 - \sqrt{2}x + \frac{1}{3}$
3) Sum = $0$, Product = $\sqrt{5}$
$x^2 + \sqrt{5}$
4) Sum = $1$, Product = $1$
$x^2 - x + 1$
5) Sum = $- \frac{1}{4}$, Product = $\frac{1}{4}$
$x^2 + \frac{1}{4}x + \frac{1}{4}$
6) Sum = $4$, Product = $1$
$x^2 - 4x + 1$
Thus, these are the required quadratic polynomials.