We need to verify that:
$ \displaystyle \sin 2A = \frac{2 \tan A}{1 + \tan^2 A} $
for $ \displaystyle A = 30^\circ $.
### Step 1: Compute Left-Hand Side (LHS)
The LHS is:
$ \sin 2A = \sin (2 \times 30^\circ) = \sin 60^\circ $
Using the known trigonometric value:
$ \sin 60^\circ = \frac{\sqrt{3}}{2} $
### Step 2: Compute Right-Hand Side (RHS)
The RHS is:
$ \frac{2 \tan 30^\circ}{1 + \tan^2 30^\circ} $
Using the known values:
$ \tan 30^\circ = \frac{1}{\sqrt{3}} $, so:
$ \tan^2 30^\circ = \left( \frac{1}{\sqrt{3}} \right)^2 = \frac{1}{3} $
Substituting these values into the RHS:
$ \displaystyle \frac{2 \times \frac{1}{\sqrt{3}}}{1 + \frac{1}{3}} $
Simplify the denominator:
$ \displaystyle 1 + \frac{1}{3} = \frac{3}{3} + \frac{1}{3} = \frac{4}{3} $
Now the expression becomes:
$ \displaystyle \frac{\frac{2}{\sqrt{3}}}{\frac{4}{3}} $
Multiplying by the reciprocal:
$ \displaystyle \frac{2}{\sqrt{3}} \times \frac{3}{4} = \frac{6}{4\sqrt{3}} = \frac{3}{2\sqrt{3}} $
Rationalizing the denominator:
$ \displaystyle \frac{3}{2\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{3\sqrt{3}}{6} = \frac{\sqrt{3}}{2} $
### Step 3: Compare LHS and RHS
Since both sides are equal:
$ \displaystyle \sin 2A = \frac{2 \tan A}{1 + \tan^2 A} $
Thus, the identity is verified for $ A = 30^\circ $.