A triangular window of a building is shown above. Its diagram represents a $\triangle ABC$ with $\angle A = 90°$ and $AB = AC$. Points P and R trisect AB and PQ II RS II AC.
Based on the above, answer the following questions :
a) Show that $\triangle BPQ \sim \triangle BAC$
b) Prove that $\displaystyle PQ = \frac{1}{3} AC$
c) If AB = 3 m, find length BQ and BS. Verify that $BQ = \frac{1}{2}BS$.
OR
c) Prove that $BR^2 + RS^2 = \frac{4}{9} BC^2$ .