(i) Determine the distance $OP$:
The coordinates of $O$ are $(0, 0)$ and the coordinates of $P$ are $(8, 6)$. The distance between two points $(x_1, y_1)$ and $(x_2, y_2)$ on a plane is given by the distance formula:
$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
For points $O(0, 0)$ and $P(8, 6)$, the distance $OP$ is:
$OP = \sqrt{(8 - 0)^2 + (6 - 0)^2} $
$= \sqrt{8^2 + 6^2} = \sqrt{64 + 36} = \sqrt{100} = 10$
So, the distance $OP$ is $10$ units.
(ii) $QS$ is represented by the equation $2x + 9y = 42$. Find the coordinates of the point where it intersects the y-axis.
To find the intersection of the line with the y-axis, we set $x = 0$ because any point on the y-axis has the form $(0, y)$. Substituting $x = 0$ into the equation of the line $2x + 9y = 42$, we get:
$2(0) + 9y = 42$
$9y = 42$
$y = \frac{42}{9} = 4.67$
Thus, the coordinates of the point where the line intersects the y-axis are $(0, 4.67)$.
(iii) (a) Point $R(4.8, y)$ divides the line segment $OP$ in a certain ratio. Find the ratio. Hence, find the value of $y$.
The coordinates of $O$ are $(0, 0)$ and the coordinates of $P$ are $(8, 6)$. Point $R$ divides the line segment $OP$ in some ratio. Using the section formula, if a point $(x, y)$ divides a line segment joining two points $(x_1, y_1)$ and $(x_2, y_2)$ in the ratio $m:n$, then the coordinates of the point are given by:
$x = \frac{mx_2 + nx_1}{m+n}$
$y = \frac{my_2 + ny_1}{m+n}$
For point $R(4.8, y)$, we know the $x$-coordinate of $R$ is $4.8$. Using the section formula for the $x$-coordinate:
$4.8 = \frac{m \cdot 8 + n \cdot 0}{m + n}$
$4.8 = \frac{8m}{m + n}$
Multiplying both sides by $(m + n)$:
$4.8(m + n) = 8m$
$4.8m + 4.8n = 8m$
$4.8n = 3.2m$
$n = \frac{3.2}{4.8}m = \frac{2}{3}m$
So, the ratio is $m:n = 3:2$.
Now, we can use the $y$-coordinate of point $R$ to find the value of $y$. Using the section formula for the $y$-coordinate:
$y = \frac{m \cdot 6 + n \cdot 0}{m + n} = \frac{6m}{m + n}$
Substitute $n = \frac{2}{3}m$ into the equation:
$y = \frac{6m}{m + \frac{2}{3}m} $
$= \frac{6m}{\frac{5}{3}m} $
$= \frac{6 \cdot 3}{5} = \frac{18}{5} = 3.6$
Thus, the value of $y$ is $3.6$.
(iii) (b) Using the distance formula, show that $\frac{PQ}{OS} = \frac{2}{3}$.
First, let's find the distances $PQ$ and $OS$.
The coordinates of $P$ are $(8, 6)$ and the coordinates of $Q$ are $(12, 2)$. The distance $PQ$ is:
$PQ = \sqrt{(12 - 8)^2 + (2 - 6)^2} $
$= \sqrt{4^2 + (-4)^2} = \sqrt{16 + 16} = \sqrt{32} $
$= 4\sqrt{2}$
The coordinates of $O$ are $(0, 0)$ and the coordinates of $S$ are $(-6, 6)$. The distance $OS$ is:
$OS = \sqrt{(-6 - 0)^2 + (6 - 0)^2} $
$= \sqrt{(-6)^2 + 6^2} = \sqrt{36 + 36} = \sqrt{72} $
$= 6\sqrt{2}$
Now, calculate the ratio $\frac{PQ}{OS}$:
$\frac{PQ}{OS} = \frac{4\sqrt{2}}{6\sqrt{2}} = \frac{4}{6} = \frac{2}{3}$
Thus, $\frac{PQ}{OS} = \frac{2}{3}$.