2
2
Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.
Find the zeroes of the following quadratic polynomials and verify the relationship between
the zeroes and the coefficients.
- $x^2 – 2x – 8$
- $4s^2 – 4s + 1$
- $6x^2 – 3 – 7x$
- $4u^2 + 8u $
- $t^2 – 15$
- $3x^2 – x – 4$
This Question has 2 answers.
$ \text{1. } x^2 - 2x - 8 $
$\text{The standard form of the quadratic equation is } ax^2 + bx + c = 0. \text{ For this polynomial: } a = 1, \, b = -2, \, c = -8.$
$\text{Using the quadratic formula: }$
$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
$\text{Substitute the values of } a, b, c:$
$x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(1)(-8)}}{2(1)}$
$x = \frac{2 \pm \sqrt{4 + 32}}{2}$
$x = \frac{2 \pm \sqrt{36}}{2}$
$x = \frac{2 \pm 6}{2}$
$\text{So, the zeroes are: }$
$x = \frac{2 + 6}{2} = 4 \quad \text{or} \quad x = \frac{2 - 6}{2} = -2.$
$\text{The sum of the zeroes is: } \alpha + \beta = 4 + (-2) = 2 = -\frac{b}{a}, \quad \text{and}$
$\text{the product of the zeroes is: } \alpha \beta = 4 \times (-2) = -8 = \frac{c}{a}.$
$\text{Thus, the relationship between the zeroes and the coefficients is verified.}$
$ \text{2. } 4s^2 - 4s + 1 $
$\text{For this polynomial, } a = 4, \, b = -4, \, c = 1.$
$x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(4)(1)}}{2(4)}$
$x = \frac{4 \pm \sqrt{16 - 16}}{8}$
$x = \frac{4 \pm \sqrt{0}}{8}$
$x = \frac{4 \pm 0}{8}$
$x = \frac{4}{8} = \frac{1}{2}$
$\text{So, the only zero is: } x = \frac{1}{2}.$
$\text{The sum of the zeroes is: } \alpha + \beta = \frac{1}{2} = -\frac{b}{a}, \quad \text{and}$
$\text{the product of the zeroes is: } \alpha \beta = \frac{1}{2} = \frac{c}{a}.$
$ \text{3. } 6x^2 - 3 - 7x $
$\text{Rearrange the equation to the standard form: } 6x^2 - 7x - 3 = 0$
$\text{For this polynomial, } a = 6, \, b = -7, \, c = -3.$
$x = \frac{-(-7) \pm \sqrt{(-7)^2 - 4(6)(-3)}}{2(6)}$
$x = \frac{7 \pm \sqrt{49 + 72}}{12}$
$x = \frac{7 \pm \sqrt{121}}{12}$
$x = \frac{7 \pm 11}{12}$
$\text{So, the zeroes are: }$
$x = \frac{7 + 11}{12} = \frac{18}{12} = 1.5 \quad \text{or} \quad x = \frac{7 - 11}{12} = \frac{-4}{12} = -\frac{1}{3}.$
$\text{The sum of the zeroes is: } \alpha + \beta = 1.5 + (-\frac{1}{3}) = \frac{3}{2} - \frac{1}{3} = \frac{5}{3} = -\frac{b}{a}, \quad \text{and}$
$\text{the product of the zeroes is: } \alpha \beta = 1.5 \times (-\frac{1}{3}) = -\frac{1.5}{3} = -\frac{1}{2} = \frac{c}{a}.$
$ \text{4. } 4u^2 + 8u $
$\text{Rearrange the equation to the standard form: } 4u^2 + 8u = 0$
$\text{For this polynomial, } a = 4, \, b = 8, \, c = 0.$
$x = \frac{-8 \pm \sqrt{8^2 - 4(4)(0)}}{2(4)}$
$x = \frac{-8 \pm \sqrt{64}}{8}$
$x = \frac{-8 \pm 8}{8}$
$\text{So, the zeroes are: }$
$x = \frac{-8 + 8}{8} = 0 \quad \text{or} \quad x = \frac{-8 - 8}{8} = -2.$
$\text{The sum of the zeroes is: } \alpha + \beta = 0 + (-2) = -2 = -\frac{b}{a}, \quad \text{and}$
$\text{the product of the zeroes is: } \alpha \beta = 0 \times (-2) = 0 = \frac{c}{a}.$
$ \text{5. } t^2 - 15 $
$\text{Rearrange the equation to the standard form: } t^2 + 0t - 15 = 0$
$\text{For this polynomial, } a = 1, \, b = 0, \, c = -15.$
$x = \frac{-0 \pm \sqrt{0^2 - 4(1)(-15)}}{2(1)}$
$x = \frac{0 \pm \sqrt{60}}{2}$
$x = \frac{0 \pm \sqrt{4 \times 15}}{2}$
$x = \frac{0 \pm 2\sqrt{15}}{2}$
$x = \pm \sqrt{15}$
$\text{So, the zeroes are: } x = \sqrt{15} \quad \text{or} \quad x = -\sqrt{15}.$
$\text{The sum of the zeroes is: } \alpha + \beta = \sqrt{15} + (-\sqrt{15}) = 0 = -\frac{b}{a}, \quad \text{and}$
$\text{the product of the zeroes is: } \alpha \beta = \sqrt{15} \times (-\sqrt{15}) = -15 = \frac{c}{a}.$
$ \text{6. } 3x^2 - x - 4 $
$\text{For this polynomial, } a = 3, \, b = -1, \, c = -4.$
$x = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(3)(-4)}}{2(3)}$
$x = \frac{1 \pm \sqrt{1 + 48}}{6}$
$x = \frac{1 \pm \sqrt{49}}{6}$
$x = \frac{1 \pm 7}{6}$
$\text{So, the zeroes are: }$
$x = \frac{1 + 7}{6} = \frac{8}{6} = \frac{4}{3} \quad \text{or} \quad x = \frac{1 - 7}{6} = \frac{-6}{6} = -1.$
$\text{The sum of the zeroes is: } \alpha + \beta = \frac{4}{3} + (-1) = \frac{4}{3} - \frac{3}{3} = \frac{1}{3} = -\frac{b}{a}, \quad \text{and}$
$\text{the product of the zeroes is: } \alpha \beta = \frac{4}{3} \times (-1) = -\frac{4}{3} = \frac{c}{a}.$
$\text{The standard form of the quadratic equation is } ax^2 + bx + c = 0. \text{ For this polynomial: } a = 1, \, b = -2, \, c = -8.$
$\text{Using the quadratic formula: }$
$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
$\text{Substitute the values of } a, b, c:$
$x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(1)(-8)}}{2(1)}$
$x = \frac{2 \pm \sqrt{4 + 32}}{2}$
$x = \frac{2 \pm \sqrt{36}}{2}$
$x = \frac{2 \pm 6}{2}$
$\text{So, the zeroes are: }$
$x = \frac{2 + 6}{2} = 4 \quad \text{or} \quad x = \frac{2 - 6}{2} = -2.$
$\text{The sum of the zeroes is: } \alpha + \beta = 4 + (-2) = 2 = -\frac{b}{a}, \quad \text{and}$
$\text{the product of the zeroes is: } \alpha \beta = 4 \times (-2) = -8 = \frac{c}{a}.$
$\text{Thus, the relationship between the zeroes and the coefficients is verified.}$
$ \text{2. } 4s^2 - 4s + 1 $
$\text{For this polynomial, } a = 4, \, b = -4, \, c = 1.$
$x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(4)(1)}}{2(4)}$
$x = \frac{4 \pm \sqrt{16 - 16}}{8}$
$x = \frac{4 \pm \sqrt{0}}{8}$
$x = \frac{4 \pm 0}{8}$
$x = \frac{4}{8} = \frac{1}{2}$
$\text{So, the only zero is: } x = \frac{1}{2}.$
$\text{The sum of the zeroes is: } \alpha + \beta = \frac{1}{2} = -\frac{b}{a}, \quad \text{and}$
$\text{the product of the zeroes is: } \alpha \beta = \frac{1}{2} = \frac{c}{a}.$
$ \text{3. } 6x^2 - 3 - 7x $
$\text{Rearrange the equation to the standard form: } 6x^2 - 7x - 3 = 0$
$\text{For this polynomial, } a = 6, \, b = -7, \, c = -3.$
$x = \frac{-(-7) \pm \sqrt{(-7)^2 - 4(6)(-3)}}{2(6)}$
$x = \frac{7 \pm \sqrt{49 + 72}}{12}$
$x = \frac{7 \pm \sqrt{121}}{12}$
$x = \frac{7 \pm 11}{12}$
$\text{So, the zeroes are: }$
$x = \frac{7 + 11}{12} = \frac{18}{12} = 1.5 \quad \text{or} \quad x = \frac{7 - 11}{12} = \frac{-4}{12} = -\frac{1}{3}.$
$\text{The sum of the zeroes is: } \alpha + \beta = 1.5 + (-\frac{1}{3}) = \frac{3}{2} - \frac{1}{3} = \frac{5}{3} = -\frac{b}{a}, \quad \text{and}$
$\text{the product of the zeroes is: } \alpha \beta = 1.5 \times (-\frac{1}{3}) = -\frac{1.5}{3} = -\frac{1}{2} = \frac{c}{a}.$
$ \text{4. } 4u^2 + 8u $
$\text{Rearrange the equation to the standard form: } 4u^2 + 8u = 0$
$\text{For this polynomial, } a = 4, \, b = 8, \, c = 0.$
$x = \frac{-8 \pm \sqrt{8^2 - 4(4)(0)}}{2(4)}$
$x = \frac{-8 \pm \sqrt{64}}{8}$
$x = \frac{-8 \pm 8}{8}$
$\text{So, the zeroes are: }$
$x = \frac{-8 + 8}{8} = 0 \quad \text{or} \quad x = \frac{-8 - 8}{8} = -2.$
$\text{The sum of the zeroes is: } \alpha + \beta = 0 + (-2) = -2 = -\frac{b}{a}, \quad \text{and}$
$\text{the product of the zeroes is: } \alpha \beta = 0 \times (-2) = 0 = \frac{c}{a}.$
$ \text{5. } t^2 - 15 $
$\text{Rearrange the equation to the standard form: } t^2 + 0t - 15 = 0$
$\text{For this polynomial, } a = 1, \, b = 0, \, c = -15.$
$x = \frac{-0 \pm \sqrt{0^2 - 4(1)(-15)}}{2(1)}$
$x = \frac{0 \pm \sqrt{60}}{2}$
$x = \frac{0 \pm \sqrt{4 \times 15}}{2}$
$x = \frac{0 \pm 2\sqrt{15}}{2}$
$x = \pm \sqrt{15}$
$\text{So, the zeroes are: } x = \sqrt{15} \quad \text{or} \quad x = -\sqrt{15}.$
$\text{The sum of the zeroes is: } \alpha + \beta = \sqrt{15} + (-\sqrt{15}) = 0 = -\frac{b}{a}, \quad \text{and}$
$\text{the product of the zeroes is: } \alpha \beta = \sqrt{15} \times (-\sqrt{15}) = -15 = \frac{c}{a}.$
$ \text{6. } 3x^2 - x - 4 $
$\text{For this polynomial, } a = 3, \, b = -1, \, c = -4.$
$x = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(3)(-4)}}{2(3)}$
$x = \frac{1 \pm \sqrt{1 + 48}}{6}$
$x = \frac{1 \pm \sqrt{49}}{6}$
$x = \frac{1 \pm 7}{6}$
$\text{So, the zeroes are: }$
$x = \frac{1 + 7}{6} = \frac{8}{6} = \frac{4}{3} \quad \text{or} \quad x = \frac{1 - 7}{6} = \frac{-6}{6} = -1.$
$\text{The sum of the zeroes is: } \alpha + \beta = \frac{4}{3} + (-1) = \frac{4}{3} - \frac{3}{3} = \frac{1}{3} = -\frac{b}{a}, \quad \text{and}$
$\text{the product of the zeroes is: } \alpha \beta = \frac{4}{3} \times (-1) = -\frac{4}{3} = \frac{c}{a}.$
Thanks
Similar Questions
- Nidhi received simple interest off Rs. 1200 when invested Rs x at 6% p.a. and Rs y at 5% p.a. for 1 year. Had she invested Rs. x at 3% p.a. and Rs. y at 8% for that year, she would have received simple interest of Rs 1,260. Find the values Rs. x an y.
- A shopkeeper buys a blanket at a discount of 20% on the listed price from a wholesaler. The shopkeeper marks up the price by 15% on the listed price. A buyer pays Rs. 3795 to get it after paying sales tax rate of 10% on the price asked for. Find the profi
- Two towns P & Q are 275 km apart. A motorcycle rider starts from P towards Q at 8 a.m. at the speed of 25 km/hr. Another rider starts from Q towards P at 9 a.m. at the speed of 20 km/hr. Find at what time they will cross each other?
- Two people A and B start simultaneously from points P and Q towards Q and P respectively. After meeting for the first time, A and B take 8 hours and 18 hours respectively to reach their destination. If A travels at a speed of 96 kmph, find the speed of B.
- The total number of students in a school was 660. The ratio between boys and girls was 13:9. After some days, 30 girls joined the school and some boys left the school and new ratio between boys and girls became 6: 5. The number of boys who left the school