Let the selling price of one apple be $S_A$ and the cost price of one mango be $C_M$.
Given that the selling price of 13 apples is equal to the cost price of 26 mangoes:
$ 13S_A = 26C_M $
$ S_A = 2C_M $
Also, given that the selling price of 16 mangoes is equal to the cost price of 12 apples:
$ 16S_M = 12C_A $
$ S_M = \frac{12C_A}{16} = \frac{3C_A}{4} $
The profit on selling mangoes is 20%, so:
$ S_M = 1.2 C_M $
Substituting $ S_M = \frac{3C_A}{4} $:
$ 1.2 C_M = \frac{3C_A}{4} $
$ C_M = \frac{3C_A}{4 \times 1.2} $
$ C_M = \frac{3C_A}{4.8} $
$ C_M = \frac{5C_A}{8} $
From $ S_A = 2C_M $:
$ S_A = 2 \times \frac{5C_A}{8} = \frac{10C_A}{8} = \frac{5C_A}{4} $
Profit percentage on apples:
$ \frac{S_A - C_A}{C_A} \times 100 = \frac{\frac{5C_A}{4} - C_A}{C_A} \times 100 $
$ = \frac{\frac{5C_A}{4} - \frac{4C_A}{4}}{C_A} \times 100 $
$ = \frac{\frac{C_A}{4}}{C_A} \times 100 $
$ = \frac{1}{4} \times 100 $
$ = 25\% $
Thus, the correct answer is:
C) 25%