Given that $ \displaystyle DE \parallel BC $, by the **Basic Proportionality Theorem (Thales' Theorem)**, we have:
$ \displaystyle \frac{AD}{DB} = \frac{AE}{EC} $
Substituting the given values:
$ \displaystyle \frac{x + 1}{3} = \frac{2x + 1}{4} $
Cross multiplying:
$ \displaystyle (x + 1) \times 4 = (2x + 1) \times 3 $
$ \displaystyle 4x + 4 = 6x + 3 $
Rearranging:
$ \displaystyle 4 + 1 = 6x - 4x $
$ \displaystyle 5 = 2x $
$ \displaystyle x = \frac{5}{2} $
Thus, the value of $ \displaystyle x $ is **$ \displaystyle \frac{5}{2} $**.