We are given the equation:
$ \displaystyle \sqrt{3} \sin \theta = \cos \theta $
### Step 1: Express in Terms of $\tan \theta$
Dividing both sides by $\cos \theta$:
$ \displaystyle \frac{\sqrt{3} \sin \theta}{\cos \theta} = \frac{\cos \theta}{\cos \theta} $
$ \displaystyle \sqrt{3} \tan \theta = 1 $
$ \displaystyle \tan \theta = \frac{1}{\sqrt{3}} $
### Step 2: Solve for $\theta$
We know that:
$ \displaystyle \tan 30^\circ = \frac{1}{\sqrt{3}} $
Thus,
$ \displaystyle \theta = 30^\circ $